Dunedin, New Zedand, Springer-veriag (199/) cboo0bo

A Fuzzy Logic Approach to Computer Software Source Code Authorship Analysis

R. 1. Kilgour, A.R. Gray, P. J. Sallisand S. G. MacDonell

Department of Information Science, University of Otago, PO Box 56, Dunedin, New Zealand

Email: rikilgour @commer ce.otago.ac.nz

Abstract

Software source @de aithorship analysis has bemme a important
areain recent yeas with promising applicaions in bah the lega
sedor (such as proof of ownership and software forensics) and the
educaion sedor (such as plagiarism detedion and assessng style).
Authorship analysis encompases the sub-aress of author
discrimination, author charaderizaion, and similarity detedion
(also referred to as plagiarism detedion). While alarge number of
metrics have been propaosed for this task, many borrowed or adapted
from the aeaof computational linguistics, there is a difficulty with
cgoturing certain types of information in terms of quantitative
measurement. Here it is proposed that existing numerica metrics
shoud be suppemented with fuzzy-logic linguistic variables to
cgpture more subjedive dements of authorship, such as the degree
to which comments match the adual source @de's behavior. These
variables avoid the need for complex and subjedive rules, repladng
these with an expert’s judgement. Fuzzy-logic models may aso
help to overcome problems with small data sets for cdibrating such
models. Using authorship dscrimination as atest case, the utility of
objedive and fuzzy measures, singularly and in combination, is
asesed as well as the mnsistency of the measures between
courters.

1 Introduction

Software metrics in the traditiond sense most commonly
refers to quantitative assessments applied to products or
proceses. Thus the number of lines of code in a series of
programs, defed density, and length of documentation in
pages could be onsidered to be fairly typicd examples.
Here, however, the term refers to the more spedalized sub-
field that has approadhed that task of measuring aspeds of
source @de that relate in some manner or other to aspeds of
the programmer.

These relationships are asumed to exist due to the
psychologicd makeup of the programmer, including the
manner in which they approach the problem-solving process
the manner of programming to which they are accistomed,
and various demographic variables sich as experience ad
gender. In this manner, the task of software source @de
authorship analysis paralels to some degree written text
authorship analysis [Sdllis, 1994. For example, attributing
authorship of a new work to Shakespeae or assessng the
psychologicd charaderistics of a susped as expressed in
samples of writingin aforensic investigation. For thisreason

there has been considerable transfer of ideas and techniques
from the traditional textual analysis and forensics fields to
source ®de aalysis. In the remainder of the paper
references to authorship analysis refer spedficdly to source
code analysis unlessexplicitly stated otherwise.

The field of authorship analysis can be @nveniently
partitioned into particular application goals, with some
techniques and measures more gpropriate for some goals
than others. The three main aress where software metrics
have been used for authorship analysis are aithor
discrimination, author charaderizaion, and similarity
detedion.

Author discrimination usualy refers to the devel opment
of models that can identify which of a known set of authors
was most likely to have written a new pieceof source mde.
Thisis caried out by tuning the model with as many pieces
of code from ead author as possble. A related areais
determining whether a given author could have written a
piece of source mde. This particular case overlaps with
simil arity detedion, which is discussed below.

Author charaderization is the task of assciating
personality and badkground fadors of the aithor to feaures
found in the source @mde. For example, the initial language
that the author programmed in may affed how they program
in subsequent languages.

The aeaof similarity detedion has been the primary area
of reseach gven its implications for plagiarism detedion in
educational institutions [Jankowitz, 1988 Whale 1990. This
areaoverlaps sibstantially with authorship dscrimination in
some caes, but also exhibits its own urique problems and
requirements.

In al of these caes, metrics that are used for developing
these models are aurrently quantitative or caegoricd and are
usually counted with an automated system, although rend-
courting is also used in some caes. The principal problem
with this approach has been the requirement that the metrics
can be defined in an objedive manner with an assciated
courting algorithm. This is trivial for many metrics, but is
problematic for others snce many of the more interesting
metrics, such as how well the cde and comments correspond
to eat other and spelling errors consistently made, are
difficult (if not impossble) to quantify in a reasonable
manner.

www.manaraa.com

Here the gproac taken isto use a @mbination of fuzzy-
logic lingustic variables for subjedive aspeds, alongside the
already developed numericd measures. Sedion 2 provides
some more detail about software metrics for authorship
analysis, Sedion 3 discusses the use of fuzzy logic metrics,
Sedion 4 presents a small case study that ill ustrates the use
of such hybrid models, and Sedion 5 considers the
implications of this work and some aeas which require
further attention.

2 Software Metricsfor Authorship Analysis

Although programming langueges are amittedly less free
form than natural languages, in terms of syntax and grammar,
they ill alow a cetain amount of flexibility that enables
programmers to express themselves in different ways. For
instance, a given programmer may prefer a particular loogng
control construct over another functionally equivalent set of
statements; or another programmer may be meticulous in
terms of maintaining program nesting depths when compared
to a mllegue. There is sibstantial literature that detail s
some of the many metrics used for this purpose ad the
interested reader is referred to [Berry and Meekings, 1985
Jankowitz, 1988 Spafford and Weeber, 1993 as useful
summaries of some of these.

Our approach to authorship analysis is based on the
congtruction of an author profile [Sallis et al. 1994, using a
comprehensive set of program metrics. If programmers do
indeed adopt particular stylesin their coding then this sould
be evident in the mnstructs they use, and should therefore be
measurable. The profile for a given programmer is likely to
include metrics relating to product size, structure, layout, and
expresson. It should also incorporate some mnsideration of
languege analysis, in that a particular programmer may use a
standard approach to naming veriables, for example. templ,
temp2;, or C_key and O_key for customer and order key
respedively.

Measures of program size (both at the token and
statement level) and structure ae likely to be dfedive only
in instances where asimilar program (in terms of required
functionality) written by the same aithor is available for
reference As unlikely as this may seem, it is common for
programmers to retrieve and adapt pre-tested segments of
code that they have written previoudy for use in a new
system. After all, many systems within a given application
domain will have cmponents or modules in common (for
example, an order processng system has a standard set of
buil ding blocks that will be aistomized as hecessry). Thisis
also likely to be the cae within an educaion setting where
plagiarism detedion is the goal. If thisisthe cae, then we
could exped similar size ad structure measures to be
obtained from an analysis of the two o more sample
modules. Indicators of layout (including resting depth, white
space commenting, statement length) and syntadic
expresson, on the other hand, may be more generaly
asciated with a given programmer, without requiring
recourse to a functionally equivalent program. Thus levels of
nesting depth and comment structure may be dtributable to

individual coders irrespedive of the particular program they
are developing.

Admittedly issuies such as global code reuse from
libraries, or the strict adherence to particularly detailed
organizaional standards could confound this type of analysis.
Within an educational setting the degree of influence of the
ledurer's code examples must also be considered, as well as
the posdble desirability of some llaboration between
students. Having said this, however, there would till seem to
be sufficient leavay for individual programmers to exhibit
their own brand or style of coding in terms of comment
content and structure and in the choice ad use of variable,
constant and label names [Spafford and Weeber, 1993. Itis
our assertion, then, that a comprehensive profile that takes
into acount as many aspeds of coding structure and content
as posshle, including charaderistics of language use, should
effedively enable the differentiation of program authors,
given the avail ability of a sufficiently large pod of programs.

3 Fuzzy Logic Metricsfor Author ship
Characterization

The main advantage of using fuzzy variables is that they
alow for the cature of concepts that programmers can
identify with, such as complexity, deliberate versus non-
deliberate spelling errors, and the degreeto which code and
comments match. It is suggested that expert programmers
can classfy code into fuzzy logic caegories using such
variables with relative e@e and consistency.

Another advantages of using fuzzy logic is that by
reducing the number of free parameters in the model, less
data is required for cdibration. For many applicaions of
authorship analysis, the large quantities of data required for
using reural network or statisticd models are simply not
available.

Finally, some metrics have been developed that attempt to
avoid the problems inherent in inflexible counting algorithms
and rely on the expert working through the programs
applying subjedive munting rules. Hereit is siggested that
single measures can be made with high levels of acaracgy
after a less d¢ringent examination by using lingustic
variables.

By developing a series of fuzzy logic metrics, fuzzy logic
models can be aeaed that combine these with traditional
numerica measurements where this is appropriate. In this
way the most useful set of metrics (a mixture of fuzzy and
numericad variables) can be used together. Other fuzzy
techniques such as fuzzy case-based reasoning could also be
used.

The remainder of the paper will assuume the use of the
C++ programming languege for examples. The wncepts
generalize to most other langueges fairly readily. While the
use of quantitative variables sich as siown in Table 1 is dill
recommended it is siggested that they be supplemented with
qualitative variables as siown in Table 2.

www.manaraa.com

Table 1. Objective M easures

metrics were combined to seeif a synergy of the two forms
could achieve better results. The results are shown in Table
4. Only one set of objedive metrics (1-7) is sown for eat
program/author combination, along with the two experts
measurements of the fuzzy variables (F1-F6) in ead case.
Programs la to 4a represent the four programs written by
Author A and programs 1b to 4brepresent the corresponding
programs written by Author B.

Table 3. Fuzzy Values

Metric Objedive Measures
1 Propation d blank lines
2 Propation d linesthat are or include mmments
3 Average length of identifiers
4 Use of templates
5 Statements per function/method
6 Use of underscoresin identifiers
7 Use of capitdizationin identifiers
Table 2. Fuzzy Variable M easures
Metric Fuzzy Variable Measures
F1 Braces on separate lines
F2 Degreeof indentation used
F3 Meaningful identifiers
F4 Use of utility variables
F5 Spelling errors
F6 Comments match code

Some of the variables down in Table 2 could be
guantified. For example the style of braces used could be
clasdfied into, say, opening on a singe line, closing on a
single line, bath on asinge line, and neither on a singe line.
Exceptions to the predominant rule could be munted and
treaed as propations. However, the use of a fuzzy logic
variable dlows for a quick and eassy measure to be taken,
without unrecessary assumptions.

4 [llustrative Case Study

An illustrative experiment was caried out using a small
amount of data. This experiment involved eight programs
written in C++ by two textbodk authors [Ammerad, 1996
Flamig, 1995 who were dso experienced software
developers. The programs were implementations of
quicksort, a generic text search, seledion sort, and insertion
sort algorithms (in that order). Metrics were extraded from
the mde, with a goal of discriminating between the two
authors. This experiment was caried out as an ill ustrative
pilot, as a full set of data is currently being gathered from a
much wider range of programs and authors.

Firstly, some objedive metrics (Table 1) were extraded
from the mde using a mbination of an automated
extradion tod and hand courting. Some analysis was then
performed on these metrics. Seaondly, the programs were
presented to two experienced software developers for
subjedive analysis, and fuzzy logic metrics (Table 2) were
derived using the best match of the labels in Table 3. After
analysis of these fuzzy metrics for author discrimination, the

Fuzzy Vaue Vauein Table 4
Never/Almost Never N
Occasionally @)
Sometimes S
Most of thetime M
Always/Almost Always A

Table 4. Data from Case Study

Metric Progla Prog2a Prog3a Prog4a Prog Prog Prog Prog

1b 2b 3b 4b

1 359 7/62 0/12 0/11 1170 1596 3/23 2/22
2 7/59 12/62 112 0/11 1470 2096 6/23 5/22
3 253 305 133 240 350 334 333 360
4 Y N Y Y Y N Y Y

5 145 9.7 9.0 35 220 275 9.0 7.0
6 N N N N Y Y N Y

7 Y N Y Y Y Y Y Y

F1 SO OS SS MM SO S S
F2 M M A OA AA MA A M A
F3 S S S ON MS MS S M M
F4 M S MS SO MO S M S
F5 N N NN ON NN N N
F6 O SM MS NN MM A M M A O

While this data is intended to be used purely as an
ill ustration of how the two types of authorship measurements
can be used together (since given the number of variables and
observations the task of discrimination is trivial, and there is
no hold-out validation set to confirm any relationships
observed), some preliminary conclusions were tentatively
drawn.
e Some programming tasks may suit certain styles (for
example, the use of templates)
e Severa programs may be nealed to extrad reliable
metrics (for example, the use of underscores) where the
behavior is not completely consistent

www.manaraa.com

e Fuzzy metrics, athough subjedive, tend to be cnsistent
over various analysts, espedally after normalizing eadh
expert’s baseline. These metrics also alow for the
colledion of additional information not covered by the
objedive measures

The last point mentioned about the mnsistency of the
expert’s labeling of programs, providing that some form of
normalization is used, is important to note. While it may in
some caes be possble for the experts to discuss what
congtitutes a given level of some variable, and perhaps even
identify prototype examples of programs that fit into ead or
some of the cdegories, the use of post-hoc rescding appeas
to considerably reduce the differences between the
measurements with minimal effort.

If this example was to be extended into a more cwmplete
model, then the aeaion of a fuzzy model, such as a fuzzy
logic rule base, fuzzy case-based reasoning model, or fuzzy
discriminant analysis model, would be caried out. This
model would then use dl available information, both fuzzy
and numericd variables.

Again it is important to note that the éove example is
simply an ill ustration of how such fuzzy logic metrics could
be defined and used for the task of authorship discrimination.
The use of such metrics for authorship charaderizaion and
similarity detedion is adso seen as both feasible and
desirable.

5 Conclusions and Further Work

It has been argued in this paper that such hybrid models,
combining objedive munts and classficaions with fuzzy
logic lingustic variables, not only improves the acaracy of
the models, but also allows for faster counting over existing
subjedive schemes.

Given the necessty for both quantitative and quditative
measurements for authorship analysis applications, fuzzy-
logic lingustic variables provide a promising approach to
improving the acaracy and ease of use of such models. The
objedive and fuzzy variables can then be cmbined into a
single model.

Current work is now focusing on developing adual
models for authorship charaderization, and further
investigating the mnsistency of the fuzzy logic measures. A
larger scde projed is underway with the goal of colleding
much larger quantities of data with awider range of programs
from amore diverse set of authors.

References

[Ammerad, 1999 L. Ammerad, Algorithms and Data
Sructuresin C++, West Sus=x, 1996

[Berry and Meekings, 1985 R. Berry and B. Meekings, A
Style Analysis of C Programs, Comrunications of the ACM,
28, 80-88, 1985

[Flamig, 1999 B. Flamig, Practical Algorithms in C++,
New York, 1995

[Jankowitz, 1988§. H. Jankowitz, Deteding Plagiarism in
Student Pascd Programs, The Computer Journal, 31, 1-8,
1988

[Sallis, 1994 P. Sallis, Contemporary Computing Methods
for the Authorship Charaderisation Problem in
Computational Lingustics;, New Zedand Journa of
Computing, 5, 85-95, 1994

[Sdlis et al., 1999 P. Sdlis, A. Aakjag and S. MadDonell,
Software Forensics: old methods for a new science
SE:E&P'96, 367-371, 1996

[Spafford and Weeber, 1993 E. Spafford and S. Weedber,
Sdtware Forensics. Can we track ode to its authors?,
Computers & Seaurity, 12, 585595, 1993

[Whale, 1990 G. Whale, Software Metrics and Plagiarism
Detedion, Journal of Systems Sdtware, 13, 131-138 1990Q

www.manaraa.com

