
www.manaraa.com

Dunedin, New Zealand, Springer-Verlag (1997) 865-868

A Fuzzy Logic Approach to Computer Software Source Code Authorship Analysis

R. I. Kilgour, A. R. Gray, P. J. Sallis and S. G. MacDonell

Department of Information Science, University of Otago, PO Box 56, Dunedin, New Zealand
Email: rikilgour@commerce.otago.ac.nz

Abstract
Software source code authorship analysis has become an important
area in recent years with promising applications in both the legal
sector (such as proof of ownership and software forensics) and the
education sector (such as plagiarism detection and assessing style).
Authorship analysis encompasses the sub-areas of author
discrimination, author characterization, and similarity detection
(also referred to as plagiarism detection). While a large number of
metrics have been proposed for this task, many borrowed or adapted
from the area of computational li nguistics, there is a diff iculty with
capturing certain types of information in terms of quantitative
measurement. Here it is proposed that existing numerical metrics
should be supplemented with fuzzy-logic linguistic variables to
capture more subjective elements of authorship, such as the degree
to which comments match the actual source code’s behavior. These
variables avoid the need for complex and subjective rules, replacing
these with an expert’s judgement. Fuzzy-logic models may also
help to overcome problems with small data sets for calibrating such
models. Using authorship discrimination as a test case, the utilit y of
objective and fuzzy measures, singularly and in combination, is
assessed as well as the consistency of the measures between
counters.

1 Introduction
Software metrics in the traditional sense most commonly
refers to quantitative assessments applied to products or
processes. Thus the number of lines of code in a series of
programs, defect density, and length of documentation in
pages could be considered to be fairly typical examples.
Here, however, the term refers to the more specialized sub-
field that has approached that task of measuring aspects of
source code that relate in some manner or other to aspects of
the programmer.

These relationships are assumed to exist due to the
psychological makeup of the programmer, including the
manner in which they approach the problem-solving process,
the manner of programming to which they are accustomed,
and various demographic variables such as experience and
gender. In this manner, the task of software source code
authorship analysis parallels to some degree written text
authorship analysis [Salli s, 1994]. For example, attributing
authorship of a new work to Shakespeare or assessing the
psychological characteristics of a suspect as expressed in
samples of writing in a forensic investigation. For this reason

there has been considerable transfer of ideas and techniques
from the traditional textual analysis and forensics fields to
source code analysis. In the remainder of the paper
references to authorship analysis refer specifically to source
code analysis unless explicitly stated otherwise.

The field of authorship analysis can be conveniently
partitioned into particular application goals, with some
techniques and measures more appropriate for some goals
than others. The three main areas where software metrics
have been used for authorship analysis are author
discrimination, author characterization, and similarity
detection.

Author discrimination usually refers to the development
of models that can identify which of a known set of authors
was most likely to have written a new piece of source code.
This is carried out by tuning the model with as many pieces
of code from each author as possible. A related area is
determining whether a given author could have written a
piece of source code. This particular case overlaps with
similarity detection, which is discussed below.

Author characterization is the task of associating
personality and background factors of the author to features
found in the source code. For example, the initial language
that the author programmed in may affect how they program
in subsequent languages.

The area of similarity detection has been the primary area
of research given its implications for plagiarism detection in
educational institutions [Jankowitz, 1988; Whale 1990]. This
area overlaps substantially with authorship discrimination in
some cases, but also exhibits its own unique problems and
requirements.

In all of these cases, metrics that are used for developing
these models are currently quantitative or categorical and are
usually counted with an automated system, although hand-
counting is also used in some cases. The principal problem
with this approach has been the requirement that the metrics
can be defined in an objective manner with an associated
counting algorithm. This is trivial for many metrics, but is
problematic for others since many of the more interesting
metrics, such as how well the code and comments correspond
to each other and spelli ng errors consistently made, are
diff icult (if not impossible) to quantify in a reasonable
manner.

www.manaraa.com

Here the approach taken is to use a combination of fuzzy-
logic linguistic variables for subjective aspects, alongside the
already developed numerical measures. Section 2 provides
some more detail about software metrics for authorship
analysis, Section 3 discusses the use of fuzzy logic metrics,
Section 4 presents a small case study that ill ustrates the use
of such hybrid models, and Section 5 considers the
implications of this work and some areas which require
further attention.

2 Software Metrics for Authorship Analysis

Although programming languages are admittedly less free
form than natural languages, in terms of syntax and grammar,
they still allow a certain amount of flexibilit y that enables
programmers to express themselves in different ways. For
instance, a given programmer may prefer a particular looping
control construct over another functionally equivalent set of
statements; or another programmer may be meticulous in
terms of maintaining program nesting depths when compared
to a colleague. There is substantial lit erature that details
some of the many metrics used for this purpose and the
interested reader is referred to [Berry and Meekings, 1985;
Jankowitz, 1988; Spafford and Weeber, 1993] as useful
summaries of some of these.

Our approach to authorship analysis is based on the
construction of an author profile [Salli s et al. 1996], using a
comprehensive set of program metrics. If programmers do
indeed adopt particular styles in their coding then this should
be evident in the constructs they use, and should therefore be
measurable. The profile for a given programmer is likely to
include metrics relating to product size, structure, layout, and
expression. It should also incorporate some consideration of
language analysis, in that a particular programmer may use a
standard approach to naming variables, for example. temp1,
temp2; or C_key and O_key for customer and order key
respectively.

Measures of program size (both at the token and
statement level) and structure are likely to be effective only
in instances where a similar program (in terms of required
functionality) written by the same author is available for
reference. As unlikely as this may seem, it is common for
programmers to retrieve and adapt pre-tested segments of
code that they have written previously for use in a new
system. After all , many systems within a given application
domain will have components or modules in common (for
example, an order processing system has a standard set of
building blocks that will be customized as necessary). This is
also likely to be the case within an education setting where
plagiarism detection is the goal. If this is the case, then we
could expect similar size and structure measures to be
obtained from an analysis of the two or more sample
modules. Indicators of layout (including nesting depth, white
space, commenting, statement length) and syntactic
expression, on the other hand, may be more generally
associated with a given programmer, without requiring
recourse to a functionally equivalent program. Thus levels of
nesting depth and comment structure may be attributable to

individual coders irrespective of the particular program they
are developing.

Admittedly issues such as global code reuse from
libraries, or the strict adherence to particularly detailed
organizational standards could confound this type of analysis.
Within an educational setting the degree of influence of the
lecturer’s code examples must also be considered, as well as
the possible desirabilit y of some collaboration between
students. Having said this, however, there would still seem to
be suff icient leeway for individual programmers to exhibit
their own brand or style of coding in terms of comment
content and structure and in the choice and use of variable,
constant and label names [Spafford and Weeber, 1993]. It is
our assertion, then, that a comprehensive profile that takes
into account as many aspects of coding structure and content
as possible, including characteristics of language use, should
effectively enable the differentiation of program authors,
given the availabilit y of a suff iciently large pool of programs.

3 Fuzzy Logic Metrics for Authorship
Characterization

The main advantage of using fuzzy variables is that they
allow for the capture of concepts that programmers can
identify with, such as complexity, deliberate versus non-
deliberate spelli ng errors, and the degree to which code and
comments match. It is suggested that expert programmers
can classify code into fuzzy logic categories using such
variables with relative ease and consistency.

Another advantages of using fuzzy logic is that by
reducing the number of free parameters in the model, less
data is required for calibration. For many applications of
authorship analysis, the large quantities of data required for
using neural network or statistical models are simply not
available.

Finally, some metrics have been developed that attempt to
avoid the problems inherent in inflexible counting algorithms
and rely on the expert working through the programs
applying subjective counting rules. Here it is suggested that
single measures can be made with high levels of accuracy
after a less stringent examination by using linguistic
variables.

By developing a series of fuzzy logic metrics, fuzzy logic
models can be created that combine these with traditional
numerical measurements where this is appropriate. In this
way the most useful set of metrics (a mixture of fuzzy and
numerical variables) can be used together. Other fuzzy
techniques such as fuzzy case-based reasoning could also be
used.

The remainder of the paper will assume the use of the
C++ programming language for examples. The concepts
generalize to most other languages fairly readily. While the
use of quantitative variables such as shown in Table 1 is still
recommended it is suggested that they be supplemented with
qualitative variables as shown in Table 2.

www.manaraa.com

Table 1. Objective Measures

Metric Objective Measures

1 Proportion of blank lines

2 Proportion of lines that are or include comments

3 Average length of identifiers

4 Use of templates

5 Statements per function/method

6 Use of underscores in identifiers

7 Use of capitalization in identifiers

Table 2. Fuzzy Variable Measures

Metric Fuzzy Variable Measures

F1 Braces on separate lines

F2 Degree of indentation used

F3 Meaningful identifiers

F4 Use of utilit y variables

F5 Spelli ng errors

F6 Comments match code

Some of the variables shown in Table 2 could be
quantified. For example the style of braces used could be
classified into, say, opening on a single line, closing on a
single line, both on a single line, and neither on a single line.
Exceptions to the predominant rule could be counted and
treated as proportions. However, the use of a fuzzy logic
variable allows for a quick and easy measure to be taken,
without unnecessary assumptions.

4 Illustrative Case Study

An ill ustrative experiment was carried out using a small
amount of data. This experiment involved eight programs
written in C++ by two textbook authors [Ammeraal, 1996;
Flamig, 1995] who were also experienced software
developers. The programs were implementations of
quicksort, a generic text search, selection sort, and insertion
sort algorithms (in that order). Metrics were extracted from
the code, with a goal of discriminating between the two
authors. This experiment was carried out as an ill ustrative
pilot, as a full set of data is currently being gathered from a
much wider range of programs and authors.

Firstly, some objective metrics (Table 1) were extracted
from the code using a combination of an automated
extraction tool and hand counting. Some analysis was then
performed on these metrics. Secondly, the programs were
presented to two experienced software developers for
subjective analysis, and fuzzy logic metrics (Table 2) were
derived using the best match of the labels in Table 3. After
analysis of these fuzzy metrics for author discrimination, the

metrics were combined to see if a synergy of the two forms
could achieve better results. The results are shown in Table
4. Only one set of objective metrics (1-7) is shown for each
program/author combination, along with the two experts’
measurements of the fuzzy variables (F1-F6) in each case.
Programs 1a to 4a represent the four programs written by
Author A and programs 1b to 4b represent the corresponding
programs written by Author B.

Table 3. Fuzzy Values

Fuzzy Value Value in Table 4

Never/Almost Never N

Occasionally O

Sometimes S

Most of the time M

Always/Almost Always A

Table 4. Data from Case Study

Metric Prog 1a Prog 2a Prog 3a Prog 4a Prog
1b

Prog
2b

Prog
3b

Prog
4b

1 3/59 7/62 0 /12 0 /11 11/70 15/96 3/23 2/22

2 7/59 12/62 1/12 0/11 14/70 20/96 6/23 5/22

3 2.53 3.05 1.33 2.40 3.50 3.34 3.33 3.60

4 Y N Y Y Y N Y Y

5 14.5 9.7 9.0 3.5 22.0 27.5 9.0 7.0

6 N N N N Y Y N Y

7 Y N Y Y Y Y Y Y

F1 O N S O O S S S M M S O M M S S

F2 A M M A M M O A A A M A A A M A

F3 S O S S S O O N M S M S S O M M

F4 S O M S S S M S S O M O M S M S

F5 N N N N N N N N O N N N N N N N

F6 O O S M M S N N M M A M M A A O

While this data is intended to be used purely as an
ill ustration of how the two types of authorship measurements
can be used together (since given the number of variables and
observations the task of discrimination is trivial, and there is
no hold-out validation set to confirm any relationships
observed), some preliminary conclusions were tentatively
drawn.
• Some programming tasks may suit certain styles (for

example, the use of templates)
• Several programs may be needed to extract reliable

metrics (for example, the use of underscores) where the
behavior is not completely consistent

www.manaraa.com

• Fuzzy metrics, although subjective, tend to be consistent
over various analysts, especially after normalizing each
expert’s baseline. These metrics also allow for the
collection of additional information not covered by the
objective measures

The last point mentioned about the consistency of the
expert’s labeling of programs, providing that some form of
normalization is used, is important to note. While it may in
some cases be possible for the experts to discuss what
constitutes a given level of some variable, and perhaps even
identify prototype examples of programs that fit into each or
some of the categories, the use of post-hoc rescaling appears
to considerably reduce the differences between the
measurements with minimal effort.

If this example was to be extended into a more complete
model, then the creation of a fuzzy model, such as a fuzzy
logic rule base, fuzzy case-based reasoning model, or fuzzy
discriminant analysis model, would be carried out. This
model would then use all available information, both fuzzy
and numerical variables.

Again it is important to note that the above example is
simply an ill ustration of how such fuzzy logic metrics could
be defined and used for the task of authorship discrimination.
The use of such metrics for authorship characterization and
similarity detection is also seen as both feasible and
desirable.

5 Conclusions and Further Work

It has been argued in this paper that such hybrid models,
combining objective counts and classifications with fuzzy
logic linguistic variables, not only improves the accuracy of
the models, but also allows for faster counting over existing
subjective schemes.

Given the necessity for both quantitative and qualitative
measurements for authorship analysis applications, fuzzy-
logic linguistic variables provide a promising approach to
improving the accuracy and ease of use of such models. The
objective and fuzzy variables can then be combined into a
single model.

Current work is now focusing on developing actual
models for authorship characterization, and further
investigating the consistency of the fuzzy logic measures. A
larger scale project is underway with the goal of collecting
much larger quantities of data with a wider range of programs
from a more diverse set of authors.

References

[Ammeraal, 1996] L. Ammeraal, Algorithms and Data
Structures in C++ , West Sussex, 1996.

[Berry and Meekings, 1985] R. Berry and B. Meekings, A
Style Analysis of C Programs, Communications of the ACM,
28, 80-88, 1985.

[Flamig, 1995] B. Flamig, Practical Algorithms in C++ ,
New York, 1995.

[Jankowitz, 1988]. H. Jankowitz, Detecting Plagiarism in
Student Pascal Programs, The Computer Journal, 31, 1-8,
1988.

[Salli s, 1994] P. Salli s, Contemporary Computing Methods
for the Authorship Characterisation Problem in
Computational Linguistics, New Zealand Journal of
Computing, 5, 85-95, 1994.

[Salli s et al., 1996] P. Salli s, A. Aakjaer and S. MacDonell ,
Software Forensics: old methods for a new science,
SE:E&P’96, 367-371, 1996.

[Spafford and Weeber, 1993] E. Spafford and S. Weeber,
Software Forensics: Can we track code to its authors?,
Computers & Security, 12, 585-595, 1993.

[Whale, 1990] G. Whale, Software Metrics and Plagiarism
Detection, Journal of Systems Software, 13, 131-138, 1990.

